Aplikasi Sel Punca pada Uji Toksisitas

Authors

  • Wening Sari

https://doi.org/10.33476/mkp.v11i1.955

Keywords:

sel punca, uji toksisitas, embriotoksisitas

Abstract

Uji toksisitas penting dilakukan untuk memastikan suatu zat, khususnya calon obat, aman bagi manusia. Penggunaan hewan coba pada uji toksisitas saat ini dibatasi terkait hasil yang tidak sepenuhnya dapat diekstrapolasi pada manusia serta isu hak kesejahteraan hewan. Pengembangan uji toksisitas in vitro merupakan upaya reduction, refinement dan replacement penggunaan hewan coba pada penelitian laboratorium. Penggunaan kultur sel primer asal manusia untuk uji in vitro menghadapi keterbatasan dalam kesediaan dan konsistensi sumber sel. Sel punca memiliki kemampuan berproliferasi dan berdiferensiasi. Terdapat 3 jenis sel punca yang dapat digunakan sebagai model pada uji toksisitas, yakni sel punca embrional (embryonic stem cells/ESCs), sel punca dewasa (non-embryonic/somatic/adult stem cells), serta sel punca pluripoten hasil induksi dari sel somatik (induced pluripotent stem cells/iPSCs). Aplikasi sel punca pada uji toksisitas dapat digunakan untuk evaluasi toksisitas akut, embriotoksisitas, serta toksisitas terhadap fungsional sel.

References

Abud APR, Zych J, Reus TL, Kuligovski C, de Moraes E, Dallagiovanna B, et.al. 2015. The use of human adipose-derived stem cells based cytotoxicity assay for acute toxicity test. Regulatory Toxicology and Pharmacology.; 73 (3): 992-98.

Arome D, Chinedu E. The importance of toxicity testing. J. Pharm. BioSci. 2013; 4:146-148

Bhattacharya S, Zhang Q, Carmichael PL, 2011. Boekelheide K, Andersen ME. Toxicity testing in the 21st century: Defining new risk assessment approaches based on perturbation of intracelular toxicity pathway. Plos One.;6(6):e20887. https://doi.org/10.1371/journal.pone.0020887d [cited 2018 October 5]

Erhirhie EO, Ihekwereme CP, Ilodigwe EE. 2018. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol.;11(1): 5–12.

Estevan C, Romero AC, Pamies D, Vilanova E, Sogorb MA. 2018. Embryonic stem cells. In Kallos M (Ed). Toxicological studies, embryonic stem cells - Basic biology to bioengineering. 2011. http://www.intechopen.com/books/embryonic-stem-cells-basic-biology-to-bioengineering/embryonic-stem-cells-in-toxicological-studies. [Cited October 5]

Guha R. 2016. Preclinical pharmacology and toxicology: Important aspect in drug discovery. Adv clin Toxic.;1(1):ACT-MS-ID 000101

Hook LA. 2012. Stem cell technology for drug discovery and development. Drug discovery today.; 17(7/8):336-41

Institute National Health. Stem Cell Basics. 2015. Available from: http://stemcells.nih.gov/info/basics/pages/basics2.aspx [cited 2018 June 27].

Jennings P. 2015. The future of in vitro toxicology. Toxicol in vitro.;29(6):1217-21

Jin HJ, Bae YK, Kim M, Kwon S, Jeon HB. 2013. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci.;14:17986-8001

Knight A. 2008. Systematic reviews of animal experiments demonstrate poor contributions to human healthcare. Recent Clinical Trials.;3(2):89–96

Liu W, Deng Y, Liu Y, Gong W, Deng W. 2013. Stem Cell Models for Drug Discovery and Toxicology Studies. J Biochem Molecular Toxicology.;27( 1):17 -26

Liu S, Yin N, Faiola F. 2017. Prospects and frontiers of stem cell toxicology. Stem Cells and Development.;28(21):1528-36

Lochmann, D, Zimmer A. 2004. A practical note on the use of cytotoxicity assays. International Journal of Pharmaceutics. 2005;288:369–76. doi: 10.1016/j.ijpharm.09.018

Mori H, Hara M. 2013. Cultured stem cells as tools for toxicological assays. Journal of Bioscience and Bioengineering.;116(6): 647–52. doi: 10.1016/j.jbiosc.2013.05.028

Nash R, Krishnamoorthy M, Jenkins A, Csete M. 2012. Human embryonic stem cell model of ethanol-mediated early developmental toxicity. Exp Neurol.;12;234(1):127–35

zur Nieden N, Davis LA, Rancourt DE. 2010. Comparing three novel endpoints for developmental osteotoxicity in the embryonic stem cell test. Toxicology and Applied Pharmacology.;247(2): 91–97. doi: 10.1016/j.taap.2010.05.010

Prieto P, Cole T, Curren R, Gibson RM, Liebsch M, Raabe H, Toumainen Am, Whelan M, 2013. Kinsner-Ovaskainen A. Assessment of the predictive capacity of the 3T3 Neutral Red Uptake cytotoxicity test method to identify substances not classified for acute oral toxicity (LD 50 > 2000 mg / kg): Results of an ECVAM validation study. Regul Toxicol Pharmacol.;65(3):344-65

Repetto G, del Peso A, Zurita J. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols; 3(7):1125-31

Scanu M, Mancuso L, Cao G. 2011. Evaluation of the use of human mesenchymal stem cells for acute toxicity tests. Toxicol in Vitr.;25(8):1989–95

Seiler A, Visan A, Buesen R, Genschow E, Spielmann H. 2004. Improvement of an in vitro stem cell assay for developmental toxicity: The use of molecular endpoints in the embryonic stem cell test. Reproductive Toxicology; 18:231–40

Sun X, Xie Y, Wu L, Zhu W, Hu J, Lu R, Xu W. 2012. Lead acetate reduces the ability of human umbilical cord mesenchymal stem cells to support hematopoiesis in vitro. Molecular Medicine Reports.;6:827-32.

Ukelis U, Kramer PJ, Olejniczak K, Mueller SO. 2008. Replacement of in vivo acute oral toxicity studies by in vitro cytotoxicity methods: Opportunities, limits and regulatory status. Regul Toxicol Pharmacol.;51:108-18

Wobus AM, Loser P. 2011. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol.;85:79–117.

Yadav S, Anbalagan M, Shi Y, Wang F, Wang H. 2013. Toxicology in vitro arsenic inhibits the adipogenic differentiation of mesenchymal stem cells by down-regulating peroxisome proliferator-activated receptor gamma and CCAAT enhancer-binding proteins. Toxicol in Vitro.:27(1):211–9.

Downloads

Published

2019-06-01

Issue

Section

Artikel Penelitian