Bioactivities of Water Extract and Essential Oil from the Mace of Myristica fragrans Houtt
https://doi.org/10.33476/jky.v26i2.584
Keywords:
Myristica fragrans, α-glucosidase inhibition, antioxidant, antibacteriaAbstract
Masyarakat Indonesia telah sejak lama memanfaatkan M.fragrans H. (pala) sebagai rempah-rempah dan penambah aroma pada makanan dan minuman. Secara tradisi, M.fragrans banyak dimanfaatkan untuk pengobatan berbagai kondisi medis, termasuk diabetes mellitus. Studi ini bertujuan untuk menguji bioaktivitas fuli dari M.fragrans, dengan menguji aktivitas antidiabetic, antioksidan, dan antibakteri. Ekstrak air (EA) dan minyak atsiri (MA) diuji efeknya terhadap enzim ?-glukosidase secara in vitro dan terhadap radikal DPPH. Untuk kedua uji digunakan senyawaan standard sebagai pembanding. Kedua ekstrak juga diuji aktivitas antibakterinya terhadap enam jenis bakteri dengan metode difusi sumur. Kadar fenolik total EA lebih tinggi dibandingkan MA (47.84 dan 37.21mg GAE/100g berat kering), demikian juga dengan kadar flavonoid total EA (215.36 dan 30.12mg RE/100g berat kering). Kedua ekstrak memperlihatkan aktivitas penghambatan ?-glukosidase yang baik, dimana EA memiliki aktivitas yang lebih kuat dibandingkan dengan MA (IC50=1.86 dan 8.15mg/ml). Sejalan dengan hal itu, EA juga memperlihatkan aktivitas penghambatan radikal yang lebih kuat dibandingkan dengan MA (IC50=1.51 dan 4.59mg/ml). Berdasarkan metode difusi sumur, hanya MA terdeteksi memiliki aktivitas antibakteri dengan zona inhibisi 1.03–1.30mm. Inhibisi terbesar diamati terhadap Staphylococcus mutans. Hasil penelitian mengindikasikan adanya bioaktivitas ekstrak air dan minyak atisiri dari fuli, sehingga dapat dikembangkan potensinya sebagai agen antidiabetic dan antioksidan
References
Assa, J. R., Widjanarko, S. B., Kusnadi, J., & Berhimpon, S. (2014). Antioxidant potential of flesh, seed and mace of nutmeg (Myristica fragrans Houtt). International Journal of ChemTech Research, 6(4), 2460-2468.
Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol, 28(1), 25-30.
Champasuri, S., & Itharat, A. (2016). Bioactivities of ethanolic extracts of three parts (Wood, nutmeg and mace) from Myristica fragrans Houtt. J Med Assoc Thai, 99, S124-S130.
De Luca, V., Salim, V., Atsumi, S. M., & Yu, F. (2012). Mining the biodiversity of plants: a revolution in the making. Science, 336(6089), 1658-1661.
Dong, H.-Q., Li, M., Zhu, F., Liu, F.-L., & Huang, J.-B. (2012). Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chem, 130(2), 261-266.
Gao, J., Xu, P., Wang, Y., Wang, Y., & Hochstetter, D. (2013). Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro. Molecules, 18(9), 11614-11623.
Gupta, A. D., Bansal, V. K., Babu, V., & Maithil, N. (2013). Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol, 11(1), 25-31.
Mai, T. T., Thu, N. N., Tien, P. G., & Chuyen, N. V. (2007). Alpha-Glucosidase Inhibitory and Antioxidant Activities of Vietnamese Edible Plants and Their Relationships with Polyphenol Contents. J Nutr Sci Vitaminol, 53(3), 267-276.
Malapermal, V., Botha, I., Krishna, S. B. N., & Mbatha, J. N. (2015). Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J Biol Sci.
Oboh, G., Agunloye, O. M., Adefegha, S. A., Akinyemi, A. J., & Ademiluyi, A. O. (2015). Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol, 26(2), 165-170.
Oboh, G., Ogunsuyi, O. B., Ogunbadejo, M. D., & Adefegha, S. A. (2016). Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J Food Drug Anal, 24(3), 627-634.
Paixão, N., Perestrelo, R., Marques, J. C., & Câmara, J. S. (2007). Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem, 105(1), 204-214.
Shafiei, Z., Shuhairi, N. N., Md Fazly Shah Yap, N., Harry Sibungkil, C. A., & Latip, J. (2012). Antibacterial activity of Myristica fragrans against oral pathogens. Evid Based Complement Alternat Med, 2012.
Shukla, S., Park, J., Kim, D.-H., Hong, S.-Y., Lee, J. S., & Kim, M. (2016). Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control, 59, 854-861.
Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic, 16(3), 144-158.
Sulaiman, S. F., & Ooi, K. L. (2012). Antioxidant and anti food-borne bacterial activities of extracts from leaf and different fruit parts of Myristica fragrans Houtt. Food Control, 25(2), 533-536. doi: http://dx.doi.org/10.1016/j.foodcont.2011.11.005
Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 46(10), 4113-4117.
WHO. (2015). World health statistics 2015. Geneva, Switzerland: World Health Organization.