Environmental factors of the home affect the density of Aedes aegypti (Diptera: Culicidae)

Tri Baskoro Tunggul Satoto, Ajib Diptyanusa, Yohanes Didik Setiawan, Nur Alvira

Abstract


The transmission of Dengue Hemorrhagic Fever (DHF) by Aedes aegypti and Aedes albopictus mosquitoes is influenced by climate change and several environmental factors, namely light intensity, CO2, temperature, humidity, housing condition, drainage, and vegetation. This study aims to identify the relationship between environmental factors and dengue vector population density. This research applies an observational analytic study with a cross-sectional design. The study was conducted in 2012, in the city of Yogyakarta, Indonesia, in 39 houses in the Kricak Village and in 50 houses in the Prenggan Village. Data were collected by observation, interview, and completing checklists, as well as by measuring environmental variables. The differential effect of various factors influencing mosquito density was tested using an independent sample t-test for physical environmental factors and chi-square test for the variable physical condition of the house, biologically relevant environmental factors, drainage, residential density, and the distance between houses. The probability value was p <0.05. The results showed that differences in the physical environment, the physical condition of the house, residential density, and vegetation, all affect the density of dengue vector mosquitoes in the villages of Kricak and Prenggan. The need of raising public awareness about healthy living and care for the environment, along with advocacy to stakeholders, is important for vector density control.

 


Keywords


density; Aedes aegypti; environment; residential; vegetation

Full Text:

PDF

References


Alshehri, M.S.A., 2013. Dengue fever Outburst and its Relationship with Climatic Factors. World Appl. Sci. J. 22, 506–515. doi:10.5829/idosi.wasj.2013.22.04.443

Arsunan, A.A., Ibrahim, E., 2014. Analysis relationship and mapping of the environmental factors with the existence of mosquito larva Aedes aegypti in the endemic area of dengue fever, Makassar, Indonesia. Int J Curr Res Aca Rev 2, 1–9.

Balenghien, T., Carron, A., Sinegre, G., Bicout, D.J., 2010. Mosquito density forecast from flooding: population dynamics model for Aedes caspius (Pallas). Bull. Entomol. Res. 100, 247–254. doi:10.1017/S0007485309990745

Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T., Wint, G.R.W., Simmons, C.P., Scott, T.W., Farrar, J.J., Hay, S.I., 2013. The global distribution and burden of dengue. Nature 496, 504–507. doi:10.1038/nature12060

Centers for Disease Control and Prevention, 2006. Healthy housing reference manual. U.S. Dep. Heal. Hum. Serv.

Cheong, Y.L., Leitão, P.J., Lakes, T., 2014. Spatial and Spatio-temporal Epidemiology Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spat. Spatiotemporal. Epidemiol. 10, 75–84. doi:10.1016/j.sste.2014.05.002

Christophers, S.R., 1960. Aedes Aegpti (L.) the yellow fever mosquito: Its life history, bionomics and structure. The Cambridge University Press, London.

Corbel, V., Nosten, F., Thanispong, K., Luxemburger, C., Kongmee, M., Chareonviriyaphap, T., 2013. Challenges and prospects for dengue and malaria control in Thailand , Southeast Asia. Trends Parasitol. 29, 623–633. doi:10.1016/j.pt.2013.09.007

Dom, N.C., Hassan, A.A., Latif, Z.A., Ismail, R., 2012. Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia. Asian Pac J Trop Dis 3, 352–361. doi:10.1016/S2222-1808(13)60084-5

Farnesi, L.C., Martins, A.J., Valle, D., Rezende, G.L., 2009. Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Mem. Inst. Oswaldo Cruz 104, 124–126. doi:10.1590/S0074-02762009000100020

Garcia-Rejon, J., Loroño-Pino, M.A., Farfan-Ale, J.A., Flores-Flores, L., Rosado-Paredes, E.D.P., Rivero-Cardenas, N., Najera-Vazquez, R., Gomez-Carro, S., Lira-Zumbardo, V., Gonzalez-Martinez, P., Lozano-Fuentes, S., Elizondo-Quiroga, D., Beaty, B.J., Eisen, L., 2008. Dengue Virus – Infected Aedes aegypti in the Home Environment. Am J Trop Med Hyg 79, 940–950.

Getis, A., Morrison, A.M.Y.C., Gray, K., Scott, T.W., 2003. Characteristics of the Spatial Pattern of the Dengue Vector, Aedes Aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69, 494–505.

Gubler, D.J., Nalim, S., Tan, R., Saipan, H., Sulianti Saroso, J., 1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am. J. Trop. Med. Hyg. 28, 1045–1052.

Harrington, L.C., Scott, T.W., Lerdthusnee, K., Coleman, R.C., Costero, A., Clark, G.G., Jones, J.J., Kitthawee, S., Kittayapong, P., Sithiprasasna, R., Edman, J.D., 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72, 209–220. doi:72/2/209 [pii]

Ibarra, A.M.S., Ryan, S.J., Beltra, E., Meija, R., Silva, M., Munoz, A., 2013. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control. PLoS One 8, 1–11. doi:10.1371/journal.pone.0078263

Impoinvil, D.E., Cardenas, G.A., Gihture, J.I., Mbogo, C.M., Beier, J.C., 2007. Constant temperature and time period effects on Anopheles gambiae egg hatching. J. Am. Mosq. Control Assoc. 23, 124–30. doi:10.2987/8756-971X(2007)23[124:CTATPE]2.0.CO;2

Mohammed, A., Chadee, D.D., 2011. Effects of different temperature regimens on the development of Aedes aegypti (L .) (Diptera: Culicidae) mosquitoes. Acta Trop. 119, 38–43. doi:10.1016/j.actatropica.2011.04.004

Muturi, E.J., Jr, M.B., Montgomery, A., 2012. Temperature and density-dependent e ff ects of larval environment on Aedes aegypti competence for an alphavirus. J. Vector Ecol. 37, 154–161.

Nkuo-Akenji, T., Ntonifor, N.N., Ndukum, M.B., Abongwa, E.L., Nkwescheu, A., Anong, D.N., Songmbe, M., Boyo, M.G., Ndamukong, K.N., Titanji, V.P.K., 2006. Environmental factors affecting malaria parasite prevalence in rural Bolifamba, South West Cameroon. Afr. J. Health Sci. 13, 40–46. doi:10.4314/ajhs.v13i1.30816

Perich, M.J., Davila, G., Turner, A., Garcia, A., Nelson, M., 2000. Behavior of Resting Aedes aegypti (Culicidae: Diptera) and Its Relation to Ultra-low Volume Adulticide Efficacy in Panama City, Panama. J. Med. Entomol. 37, 2–7.

Phillips, M.L., 2008. Dengue Reborn: Widespread Resurgence of a Resilient Vector. Environ. Health Perspect. 116, 382–388. doi:10.1289/ehp.116-a382

Powell, J.R., Tabachnick, W.J., 2013. History of domestication and spread of Aedes aegypti - A Review. Mem. Inst. Oswaldo Cruz 108, 11–17. doi:10.1590/0074-0276130395

Ritchie, S. a, Long, S., Smith, G., Pyke, A., Knox, T.B., 2004. Entomological investigations in a focus of dengue transmission in Cairns, Queensland, Australia, by using the sticky ovitraps. J. Med. Entomol. 41, 1–4. doi:10.1603/0022-2585-41.1.1

Rodrigues, M.D.M., Rita, G., Monteiro, A., Leandro, L., Serpa, N., Arduino, M.D.B., Voltolini, J.C., Barbosa, G.L., Andrade, V.R., 2015. Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area , São Paulo , Brazil. Parasit. Vectors 8, 1–9. doi:10.1186/s13071-015-0703-y

Scott, T.W., Morrison, A.C., 2010. Vector Dynamics and Transmission of Dengue Virus: Implications for Dengue Surveillance and Prevention Strategies, in: Rothman, A.L. (Ed.), Current Topics in Microbiology and Immunology. Springer-Verlag, Berlin, pp. 115–128. doi:10.1007/978-3-642-02215-9

Silver, J.B., 2007. Mosquito Ecology: Field Sampling Methods. Springer Netherlands.

Stojanovich, C.J., Scott, H.G., 1965. Illustrated Key to Aedes Mosquitoes of Vietnam. U.S. Department of Health, Education, and Welfare, Atlanta.

Tabachnick, W.J., 1991. Evolutionary Genetics and Arthropod-borne Diseases: The Yellow Fever Mosquito. Entomol. Soc. Am. 37.

The World Health Organization, 1997. Vector surveillance and control, in: Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. World Health Organization, Geneva, pp. 48–59.




DOI: https://doi.org/10.33476/jky.v25i1.298

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 YARSI Medical Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

__________________________________________________________________________________________

Copyright of YARSI Medical Journal.

Powered by OJS.

Creative Commons License

This work is licensed under a Creative Commons Attribution- NonCommercial 4.0 International License.