PERBANDINGAN RESILIENCE CONCEPT DAN RULE-BASED TERHADAP PENANGANAN JADWAL OPERASI BEDAH UNTUK EMERGENCY CASE DAN ELECTIVE SURGERY
Keywords:
Surgical schedule, Resilience Concept, Rule-Based, Uncertainty Case, Emergency CaseAbstract
Surgical schedule changes, caused by uncertainty case on the day of operation, can decrease the hospital’s service quality. Resilience Concept algorithm produces the risk value for schedule modification caused by the uncertainty case. However, this algorithm only managed the delay of elective surgery in previous research. Therefore, this study applies the resilience concept algorithm in handling the emergency case, and the shift of elective surgery into earlier than its current schedule. Resilience algorithm’s performance is compared to Rule-Based algorithm in managing the surgery’s schedule for uncertainty case. There are 20 test scenarios, consisting of 12 scenarios for elective surgery schedule changes and 8 scenarios for emergency case, that were given trial to the algorithms. Both of the algorithms 100% succeeded passing through all the scenarios. Yet, both of the algorithms could not give the priority schedule changes based on the risk level. Resilience algorithm could not give the priority based on the risk level of value caused by the imperfection of the resources delay calculation (Tn).
Keywords: Surgical schedule, Resilience Concept, Rule-Based, Uncertainty Case, Emergency Case
Abstrak
Perubahan jadwal operasi akibat kejadian tidak terduga (uncertainty case) di hari-H operasi dapat menurunkan kualitas layanan rumah sakit. Algoritma Resilience Concept menghasilkan nilai resiko untuk setiap perubahan jadwal operasi yang terjadi akibat uncertainty case. Namun, algoritma ini hanya mengelola perubahan jadwal akibat keterlambatan penyelesaian operasi elektif, yang merupakan salah satu uncertainty case, pada penelitian sebelumnya. Oleh karena itu, penelitian ini menerapkan algoritma resilience concept dalam menangani kasus gawat darurat (emergency case), dan perubahan waktu pelaksanaan operasi elektif menjadi lebih awal. Kinerja algoritma resilience concept dibandingkan dengan algoritma rule-based dalam mengelola jadwal operasi untuk uncertainty case. Terdapat 20 skenario pengujian diujicobakan kepada kedua algoritma, yang terdiri dari 12 skenario pengujian perubahan jadwal operasi elektif dan 8 skenario emergency case . Kedua algoritma 100% berhasil mengeksekusi semua skenario pengujian. Akan tetapi, keduanya belum dapat memberikan prioritas perubahan jadwal berdasarkan tingkatan resiko. Ketidakoptimalan perhitungan waktu keterlambatan sumber daya (Tn) menjadi penyebab algoritma Resilience belum dapat memberikan prioritas solusi berdasarkan nilai resiko yang dihasilkan.
Kata Kunci: Jadwal Operasi, Resilience Concept, Rule-Based, Uncertainty Case, Emergency Case.
References
Belavkin, R V 2010, BIS3226 AI Techniques in Information Management, week 3: Logic and Rule-Based Reasoning, pdf, viewed 1 November 2016, http://www.eis.mdx.ac.uk/staffpages/rvb/teaching/BIS3226/hand03.pdf.
Buchanan, B G & Shortliffe, E H 1984, Rule-Based Expert System: The MYCIN Experiments of the Standford Heuristic Programming Project, Addison-Wesley, Stanford.
Carthey, J, De Leval, M R & Reason, J T 2001, ‘Institutional resilience in healthcare systems’, International Journal for Quality in Health Care, vol. 10, no. 1 , pp. 29-32.
Dexter, F, Willemsen-Dunlap, A & Lee, J D 2007, ‘Operating room managerial decision-making on the day of surgery with and without computer recommendations and status displays’, Anesth. Analg., vol. 105, no. 2, pp. 419–429.
Hans, E, Wullink, G, Houdenhoven, M V & Kazemier, G 2008, ‘Robust surgery loading’, European Journal of Operational Research, vol. 185, no. 3, pp. 1038–1050.
Haraty, R A 2016, ‘Innovative Mobile E-Healthcare Systems: A New Rule-Based Cache Replacement Strategy Using Least Profit Values’, Mobile Information Systems, vol. 63, pp. 1-9.
Hollnagel, E, Woods, D D & Leveson, N 2006, Resilience engineering: Concepts and precepts, Ashgate Publishing Ltd, Surrey, United Kingdom.
Jeffcott, S A, Ibrahim, J E & Cameron, P A 2009, “Resilience in healthcare and clinical handoverâ€, Quality and Safety in Health Care, vol.18, no. 4, pp. 256-260.
Kerber, M 2004, Introduction to AI, week 2: Expert Systems, viewed 1 november 2016, http://www.cs.bham.ac.uk/~mmk/Teaching/AI/l2.html.
Lamiri, M, Xiea, X, Dolguia, A & Grimauda, F 2008a, “Stochastic model for operating room planning with elective and emergency demand for surgeryâ€, European Journal of Operational Research, vol. 185, no. 3, pp. 1026–1037.
Saraiva, R M, Bezerra, J, Perkusich, M, Almeida, H & Siebra, C 2015, ‘A Hybrid Approach Using Case-Based Reasoning and Rule-Based Reasoning to Support Cancer Diagnosis: A Pilot Study’, Proceedings of the 15th World Congress on Health and Biomedical Informatics, pp. 862 - 866.
Wiyartanti, L, Woong, M, Chung, D & Kwan , J 2015, 'Managing Uncertainties in the Surgical Scheduling', Proceedings of Medical Informatics Europe (MIE), pp. 384–388.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).