Penentuan Jenis Dengan Analisis Gen 16SrRNA dan Uji Daya Reduksi Bakteri Resisten Merkuri Yang Diisolasi Dari Feses Pasien Dengan Tambalan Amalgam Merkuri di Puskesmas Bahu Manado

Authors

  • Fatimawali Umar Faculty of Medicine University of Sam Ratulangi, Manado

https://doi.org/10.33476/jky.v23i1.91

Keywords:

Bakteri resisten merkuri, Gen 16SrRNA, reduksi merkuri, CV-AAS

Abstract

Paparan merkuri secara kontinyu dalam saluran pencernaan, dapat menyebabkan kresistensi bakteri terhadap merkuri. Bakteri resisten merkuri bermanfaat pada proses detoksifikasi merkuri anorganik dengan mereduksinya menjadi logam merkuri yang tidak toksik. Penelitian ini bertujuan untuk menganalisis gen 16SrRNA dan menguji daya reduksinya terhadap merkuri HgCl2 dari bakteri resisten merkuri anorganik Isolat F2.1 dan F2.2 yang diisolasi dari feses pasien dengan tambalan amalgam gigi di Puskesmas Bahu Manado.  Analisis Gen 16SrRNA menggunakan metode Polymerase chain reaction (PCR) dan kadar merkuri dianalisis dengan menggunakan metode Cold-Vapor Atomic Absorption Spectrophotometry (CV-AAS). Hasil BLAST urutan nukleotida gen 16SrRNA menunjukkan bahwa kedua isolat bakteri tersebut mempunyai kemiripan 100% terhadap gen 16SrRNA bakteri Escherichia coli yang terdapat pada GenBank. Hasil analisis daya reduksi merkuri diperoleh bahwa dalam waktu 1, 12, dan 24 jam dapat menurunkan kadar merkuri dalam media berturut-turut untuk isolat F2.1: 82,2%, 87,1% dan 99,2% dan untuk isolat F2.2: 79,5%, 89,2% dan 99,3%.Hasil penelitian menunjukkan bahwa bakteri isolat F2.1 dan F2.2 yang diisolasi dari feses ialah bakteri Escherichia coli dan dapat mereduksikan HgCl2 hampir 100% dalam waktu 24 jam sehingga bakteri tersebut dapat digunakan pada penelitian selanjutnya untuk proses detoksifikasi merkuri organik.

Continuous exposure to mercury in the digestive tract, can cause mercury-resistance bacteria. Mercury resistance bacteria are useful in detoxifying processes of inorganic mercury to the reduct form of non toxic metallic mercury.This study aims to analyze 16SrRNA gene and test for mercury reduction ability of inorganic mercury resistant bacteria isolates F2.1 and F2.2, isolated from feces of patients with tooth amalgam at Puskesmas Bahu in Manado. 16SrRNA gene analysis was done using polymerase chain reaction (PCR) and mercury levels were analyzed by using the method of Cold - Vapor Atomic Absorption Spectrophotometry (CV - AAS). BLAST results of nucleotide sequence of 16SrRNA gene showed that both the bacterial isolates had 100% similarity to the 16SrRNA gene of Escherichia coli bacteria found in GenBank. The results of the analysis showed that the  reduction ability of mercury in 1 , 12 , and 24 hours can reduce levels of mercury in a row for a media F2.1 isolates: 82.2%, 87.1% and 99.2% and for isolates F2.2: 79.5%, 89.2% and 99.3%. The results showed that the bacterial isolates F2.1 and F2.2 isolated from fecal is Escherichia coli bacteria and may reduce the HgCl2 almost 100% within 24 hours so that the bacteria can be used in future studies to inorganic mercury detoxification process.

References

Fatimawali, Kepel B, Bodhi W, Kolondam B 2013. Bakteri Resisten Merkuri pada Feses Pasien dengan Tumpatan Amalgam Gigi di Puskesmas Bahu Manado, Prosiding Seminar Matematika, Sains dan TI, Unsrat Manado, hal. 217-222.

Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A 2004. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl Environ Microbiol 70: 5057-5065

Iohara K, Iiyama R, Nakamura K, Silver S, Sakai M, Takeshita M, Furukawa K 2001. The Mer Operon of a Mercury-resistant Pseudoalteromonas haloplanktis strain isolated from Minamata Bay, Japan, Appl. Microbiology and Biotechnology.

Janda MJ, and Abbott SL 2007. 16S rRNA Sequencing for Bacterial Identification in the Diagnostic Laboratory; Pluses, Perils, and Pitfalls, Microbial Diseases Laboratory, Division of Communicable Disease Control, California department of Public Health, Richmond, California 94804, Journal of Clinical Microbiology.

Jill E, Clarrige III 2004. Impact of 16S rRNA gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases, department of laboratory Medicine, University of Washington, and Pathology and Laboratory Medicine Service, Veterans Affairs Medical center, seattle, Washington. Clinical Microbiology review.

Nascimento AM and Chartone-Souza E 2003. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res.;2(1):92-101.

Ravel, J, DiRegguiero J, Robb FT, and Hill RT 2000. Cloning and Sequence Analysis of the Mercury Resistance Operon of Streptomyces sp. Strain CHR28 Reveals a Novel Putative Second Regulatory Gene. Journal of Bacteriology., 182(8):2345-2349.

Risa N dan Gusrizal 2004. Bakteri Resisten Merkuri Spektrum Sempit dari Daerah Bekas Penambangan Emas Tanpa Izin (PETI) Mandor, Kalimantan Barat, Jurnal Natur Indonesia 6(2): 67-74

Rugh CL, Senecoff JF, Meagher RB, Merkle SA 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology. 16(10), 925-928.

Sasaki Y, Mibnakawa T, Miyazaki A, Silver S, Kusano T 2005. Functional Dissection of a Mercuric Ion Transporter, MerC, from Acidithiobacillus ferrooxidans, Graduate School of Life Science, Tohoku University, Katahira Japan, Department of Microbiology and Immunology, University of Ilinois, South Wolcott Avenue, Chicago, USA, Bioscience, Biotechnology, Biochwemistry.

Schelert J, Divixt V, Hoang Vi, Simbahan J, Drozda M and Blum P 2003. Occurence and Characteritation of Mercury Resistance in the Hyperthermophilic Archaeon Sulfolobulus Solfataricus by Use Gene Desruption. Available from : www.jbacteriol.com

Silver S and Phung LT 1996. Bacterial Heavy Metal Resistance: New suprises. Annu. Rev. Microbiol. 50: 753-789.

Suheryanto 2001. Spesiasi Metil Merkuri dan Merkuri Anorganik di Perairan Sungai Musi dengan Metode Ekstraksi dan CV-AAS, Jurnal Kimia Lingkungan, Vol.2, No.2, p.107-108.

Vetriani C, Chew YS, Miller SM. 2005. Mercury Adaptation among Bacteria from a Deep-Sea Hydrothermal Vent. Appl. Environ. Microbiol.January vol. 71 no. 1, 220-226.

Zeng Xiao-xi, Tagn Jian-xin, Jiang Pei, Liu Hong-wei, Dai Zhi-min, Liu Xue-duan. 2009. Isolation, characterization and extraction of mer gene of Hg2+ resisting strain D2, Elsevier, Science Press.

Zeroual Y, Moutaouakkil A, Blaghen M. 2001. Volatilization of mercury by immobilized bacteria (Klebsiella pneumoniae) in different support by using fluidized bed bioreactor, Curr Microbiol. 43(5):322-7

Zeyaullah MD, Haque S, Nabi G. 2010. Molecular Cloning and Expression of bacterial Mercuric Reductase gene, African Journal of Biotechnology Vol. 9(25), pp. 3714-3718.

Downloads

Published

2016-01-04

Issue

Section

Research Articles